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Abstract. Cable-driven robotic arms (CDRA) are
robots with novel structures, wherein flexible cables are
used to drive rigid links identified to move the end ef-
fector according to a desired trajectory. Due to the
complex and nonlinear characteristics of this type of
robotic arm, it is challenging to derive the model, which
requires critical analysis to be conducted. This paper
presents the design, modeling, and Model Predictive
Control (MPC) of a special 2D CDRA with four rigid
links. Maplesim is employed as a tool to design and
simulate the proposed robotic arm. First, the prototype
model is constructed in Maplesim and simulated using
random input signals, and the input and output data
sets are collected. A data-driven scheme based on neu-
ral networks is used to learn the unknown kinematics
of the CDRA and to solve the kinematic control issue.
The Matlab-Simulink platform is used for this purpose,
and the black box model is obtained using the neural
network fitting tool. MPC is then used for the end effec-
tor trajectory tracking control and to validate the mod-
eling processes. Furthermore, comparative simulations
using two scenarios are applied to the controlled sys-
tem to verify the effectiveness of the proposed modeling
and control method with the aid of Mean Squared Error
(MSE) as an optimality index. The result verified that
CDRA is capable of following reference trajectories ac-
curately with MSE of 10e-5 and 4.99e-5 for rhombus
and circular trajectories respectively.
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1. Introduction

Robotic manipulators are considered one of the most
significant robotic applications since they qualify the
robots to interact with their surrounding. [1]. In re-
cent years, cable-driven robots have gained lots of in-
terests due to their individual features, such as safe hu-
man–robot interactions, flexibility, high load-to-weight
ratio [2]. Using cables to drive the manipulators pro-
vide a compact and significantly small inertia manip-
ulator since the actuators are placed at its base [3].
Bioinspired by the structure of humanoid arms, a ca-
ble driven robotic arm (CDRA) is introduced for safe
human–robot interaction, which utilizes cables to sim-
ulate the functionality of the humanoid muscles. In
CDRAs, rigid links are changed with cables which have
great advantages in reducing the mass and inertia of
robotic arms and elimination of revolute joints. These
advantages permit the end effector to reach high mo-
tion acceleration in considerable workspaces [4] which
will make them suitable in many applications [5], es-
pecially in pick and place processes [6]. These types
of manipulators can also be used for Aerial construc-
tion and inspection purposes by attaching them to a
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quadcopter [7]. In the last decades, different model of
CDRAs have been designed for various applications,
such as robots designed for service [8], high speed ma-
nipulation [9], medical application [10, 11], rehabilita-
tion tasks [9, 12–14], adaptive grasping robotic hand
[15], inspection processes [16,17], and for haptic appli-
cations [18]. For almost all CDRAs, driving cables are
traced through the linkages from nearer actuators to
their corresponding remote joints. Due to the high cou-
pling effects of multiple degrees of freedom, the kine-
matic model becomes more complicated and difficult
to derive mathematically, which may also be affected
by their nonlinear dynamic behaviors, cable hystere-
sis characteristics, structural design, the way the cable
routed, the size and the geometrical place of pulleys,
etc. [19, 20]. However, these type of robotics arms suf-
fers from several drawbacks, such as their low accu-
racy, high vibration, etc. [21] that limits their applica-
tion areas. For the aforementioned reasons, trajectory
tracking is of great importance for CDRAs to achieve
various tasks. However, it is challenging for CDRAs
to follow the trajectory in demand smoothly and pre-
cisely due to their nonlinear characteristics and pa-
rameters variation.In [22], the author used solidworks
and Simscape platform to model and control a dynam-
ical system without the need of explicit mathematical
equations. From the literatures, the mechanics of ca-
ble driven robot is quite complicated because of the
high nonlinearities and continuous deformations of ca-
bles. Unlike traditional robotics arm, the standard
robot modeling tools can not be applied to the ca-
ble driven manipulators [23]. Plentiful attempts have
been made to model the complex kinematics and dy-
namics of the cable driven robots. Optimization meth-
ods are used in [24,25] to analyze the inverse dynamic
problem, while [26, 27] use the heuristic-based meth-
ods for the same issue. A Neural network-based mod-
eling has been used to obtain a black box for a contin-
uum robot [28]. The accuracy of the obtained model
is limited to the experimental situation such as exter-
nal payloads and training data. The establishment of
a relation between the actuator space to joint space
is necessary. Uyguroglu ˘ and Demirel used oriented
graph approach for the kinematic analysis of cable-
driven robotic mechanisms [29].

In this work, we aim to accurately obtain the dy-
namics of a proposed CDRA system by capturing the
actual response of the model taking the effect of wire
elasticity, internal friction of the system parts, material
damping, as well as the hysteresis. Maplesim is used
to simulate three joints – three pullies CDRA and then
the input – output data pairs are collected. These data
are transferred to Matlab to train a black box neural
network which will represent the derived model. One
important goal of our approach is to establish a method
usable to model any cable-driven systems and improve
their position tracking accuracy. moreover, our method

is eligible to sense the magnitude and location of the
force, torque, and wire tensions. Such data can help
in control the grasping force and cable characteristics
requirements.

The remaining of the paper are organized as follows:
In Section 2. , our proposed CDRA system is in-
troduced and the Maplesim modeling is explained and
analyzed. Based on the obtained system model, MPC
control scheme is designed and simulations are con-
ducted in Section 3. . The results are also discussed
in Sections 3. , and finally Section 4. conclude
the paper by showing a summary of the main contri-
butions.

2. System Design and
Modeling

2.1. System Setup

For the vast majority of traditional robotic manipula-
tors, each kinematic joint is driven directly by individ-
ual actuator placed at the joint link. Clearly, it can
be notice that each actuator directs one joint indepen-
dently, which means that there is no coupling between
the joint and actuator pairs. Therefore, the relation-
ship between actuator space and joint space can be
easily derived. However, the exceptional characteristic
of a CDRA structure is that all the actuators are po-
sitioned at the base of the manipulator far away from
the joints. The cable pulls movements track the rout-
ing from the ends of the joints between the actuators
and the controlled joints. System modeling is based on
the CDRA platform shown in Fig. 1, which consists of
four rigid links, three revolving joints, and three pulleys
which are driven by stepper motors to actuate three ca-
bles. As it can be seen from Fig. 1, cable A which is
connected to link A, passed through link C and B and
it is pulled by pulley A. pulley B control the pulling of
cable B which passed through link C and connected to
link B while link C is controlled by pulley C through
cable C. The main parameters for the robotic manipu-
lator parts are listed in Table 1.

Fig. 1: CDRA platform drawing.
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Tab. 1: Properties of CDRA parts.

Parts Properties
Rigid link Dimensions: 60X60X400 mm

(link A to link D) Mass for each link: 100 g
Pully Radius: 100 mm,

(pulley A to pulley C) Rotation range: − pi to pi,
Mass for each pulley: 100g

Cable Radius: 4mm
Revolving joint Constrains: − pi/3 to pi/3
Elasto-Backlash Spring constant: 100000 N.m/rad,

Damping constant: 1000 N.m.s/rad,
Total Backlash: pi/3 rad

2.2. Maplesim Model

Maplesim is an advance modeling, simulation, and
analysis tools that simulate systems at symbolic level
and allows researcher to use graphical tools to apply
modern techniques and develops and analyze design
models instead of mathematical equations. This soft-
ware tool (Maplesim 2023) is used in this work to build
the model of the cable driven robot manipulator as
shown in Fig. 2. The 2D Maplesim symbolic model is
realized from the free body drawing in Fig. 1 using the
parameters in Table 1. It consists of five main com-
ponents, namely pulleys, ropes, CAD geometry with
rigid body, elasto-backlash, and end effector position
sensor. To provide smooth motion for a cable-driven
robot, elasto-backlash components with predetermined
stiffness are used. Elasto-backlashs are applied at the
joints in simulations to improve realism and accuracy.

In order for the model to be consistent with different
types of reference inputs, chirp components are used
to provide randomized signals for the system. Their
amplitudes range from pi to -pi and their instantaneous
frequencies increase or decrease linearly over time. The
output which is the end effector position is measured
using a position sensor. The input – output pairs will
be used to obtain the system black box using neural
networks as it will be shown in the next subsection.

2.3. Neural Network Model

With the rapid development of artificial intelligence,
neural network fitting procedures have opened up a
new direction for robot modeling. This type of mod-
eling uses real input and output data to train a net-
work and evaluate its progress using mean square error.
This measurement can help quantify how successfully
the black box model captures system dynamics. Three
motor-driven pulleys are linked to linear chirp signals
that generate chirps with a frequency that varies lin-
early with time in order to apply variable pulleys’ an-
gles to the cables and actuate the linkages and joints,
respectively. A neural network based black box mod-
els of the cable-driven robot can be obtained directly

from the data-driven inputs and outputs of the system,
without the need for a precise mathematical model of
the system, thus avoiding the modeling and parameter
tuning process that relies on expert experience. In or-
der to get the required input – output data, the robotic
arm is simulated under the advanced Maplesim envi-
ronment. The chirp inputs are applied and the end
effector position is recorded. Furthermore, the input –
output data sets are exported to Excel sheet to be used
in Matlab Neural Net fitting tool. Fig. 3 and Fig. 4
represent the input signals and output position plots.

n neural network fitting, feedforward neural network
equation has been used. The input data received by
the neuron multiplied by corresponding weights and
summed up by a bias term as in Eq. (1) below:

z =

n∑
i=1

(wi × xi) + b, (1)

where z is the total input weights and bias, wi indi-
cates the weights corresponding to each input xi, xi

represents the input variables, b is the bias, n is the
total number of inputs.

Then the hyperbolic tangent function activation
function is applied in order to add nonlinearity and
calculate the output of the neuron [30]. By training
multiple layers, the neural network learns complicated
relationships between inputs and outputs, with weights
and biases adjusted to reduce prediction error using
mean square error.

The recorded data from Maplesim are used in the
Neural Fitting tool (nftool) where the data should be
divided into three portions for training, validation, and
test intents. The tool also authorizes the user to nom-
inate the number of hidden neurons. In order to reach
the best settings for the tool, several experiments were
done as follows:

1. Splitting data as follows: 80% training, 10% vali-
dation, and 10% testing while the number of neu-
rons is 20.

2. Splitting data as follows: 70% training, 15% vali-
dation, and 15% testing, while the number of neu-
rons is 10.

3. Splitting data as follows: 70% training, 15% vali-
dation, and 15% testing, while the number of neu-
rons is 20.

The networks are trained to fit the outputs to the
targets using Levenberg – Marquardt algorithm and
the training results are tabulated in Table 2 where MSE
is the Mean Squared Error between the output and the
target, and R is the Regression value that measure the
correlation between the output and the target.
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Fig. 2: CDRA platform Maplesim composition.

Tab. 2: Neural network training results.

Exp. Division % No. of Neurons MSE ± Std R CIs
1 Training 70% 10 1.77553e-3 ± 7.9617e-04 0.998903 0.997807

Validation 15% 1.82997e-3 ±0.0017 0.998893 0.997787
Testing 15% 1.78486e-3 ± 0.0017 0.998896 0.997793

2 Training80% 20 4.56565e-4 ± 3.7767e-04 0.999720 0.999440
Validation 10% 4.23544e-4 ±0.0010 0.999728 0.999456
Testing 10% 6.12947e-4 ± 0.0012 0.999620 0.999240

3 Training 70% 20 2.59517e-4 ±3.0439e-04 0.999840 0.999680
Validation 15% 2.49828e-4 ±6.4528e-04 0.999848 0.999696
Testing 15% 3.00858e-4 ±7.0812e-04 0.999810 0.999620

Fig. 3: Input signals.

From the results, it can be shown that the best set-
ting is splitting data as follows: 70% training, 15% val-
idation, 15% testing, and the number of neurons is 20.
Increasing number of neurons will improve the regres-
sion results but at a cost of increasing the computation
time which is not worth since the regression value for
this setting shows that the obtained model is very close
to the actual one.

The neural network layers configuration is shown if
Fig. 5 where twenty hidden neurons are used through
the process.

Fig. 4: Output position plots.

Fig. 5: Neural network layers configuration.

The error histogram in Fig. 6 visualizes the error
between the target and predicted output. Since the er-
ror plot is distributed to zero, it means that the model
performs well. The regression plots in Fig. 7 show
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that the regression values are very close to 1 in train-
ing, validation, test, and in the overall performance. It
means that the model is fitted well according to the
data collected from the Maplesim model.

Fig. 6: Error histogram for the model fitting process.

Fig. 7: Regression plots for the training, validation, test, and
in the overall performance.

2.4. Controller Design

Due to the high-dimensional continuous state space
and nonlinear characteristics of the cable-driven robot,
MPC is preferred over other traditional control meth-
ods. It is successful at handling complicated systems
with various inputs, outputs, and limitations. MPC
employs the system’s predictive model to make future
predictions and optimize control operations accord-
ingly, allowing for improved performance even in the
presence of disturbances. MPC can handle constraints

on the system’s inputs, outputs, and states, guarantee-
ing that they are not violated during control action.
Changes in system dynamics or operating conditions
can be easily incorporated into MPC by updating the
predictive model and optimizing control actions based
on the updated data. In addition, MPC optimizes a
cost function that takes into account both control ob-
jectives and constraints [31].

A neural network models the cable-driven robot di-
rectly from the data-driven inputs and outputs of the
system without the need for derivation of a precise
mathematical equations of the system. In this paper,
we consider a scenario where the dynamics of a non-
linear system are unknown. However, the input and
output data are available. A fitted model is learned
from these data using a neural network. The model
in turn be controlled using MPC scheme. The selected
controller is an optimal controller that is used when the
model of the system being controlled is available. It is
required to control the position of the robotic arm end
effector through predefined trajectories. MPC relies
on a model of the plant to predict future trajectories
and to optimize over them. It can also handle con-
straints which are important, as violating them may
lead to undesired consequences. The goal of MPC is
to minimize a predefined cost function while satisfying
constraints such as system dynamics, actuator limita-
tions, etc [32]. At each time step, it calculates the best
set of control actions (trajectories) that minimizes the
cost function over a specific time horizon and pick the
action for the most immediate time step and the pro-
cess repeats at the following time step [33]. The overall
system Simulink representation is shown in Fig. 8.

Fig. 8: System Simulink block diagram.

The quadratic cost function for optimization is given
by:

J =

N∑
i=1

ωxi
(ri − xi)

2 +

M∑
i=1

ωui
∆u2

i , (2)

where xi is the controlled variables (measured out-
puts of the model XY coordinates of end effector),
ri is the reference variables (desired outputs: desired
XY coordinates of end effector), ui manipulated vari-
ables (Model’s inputs: pulleys’ angles) ωxi

weighting
coefficient reflecting the relative importance of xi, ωui

weighting coefficient reflecting the relative importance
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of ui. In MPC, the control horizon indicates how long
the system will be subjected to a control sequence. A
larger control horizon improves control performance,
but it may also result in more aggressive control ac-
tions [34]; therefore, we chose a control horizon equal
to 10 as shown in Table 3 by using the trial-and-error
approach and simulation-based analysis.

Tab. 3: Properties of CDRA parts.

Parameter Value
Sample time 0.005 s

Prediction horizon 60
Control horizon 10

Input Constraints Min: −π/3, Max: π/3,
RateMin: −π/16, RateMax: π/16

Output Constraints Min: -1.6, Max:1.6
Input Weights Weight: 0.0001,

Rate Weight: 5e-05,
Target: nominal

Output Weights Weight: 1

The interval at which the controller estimates new
control actions is known as the sampling time. While
a longer sample interval may result in slower system
functioning, a smaller sampling time offers faster re-
sponsiveness but increases computing effort [33]. Be-
cause our work is simulation-based, we used a short
sampling time of 0.005 seconds in order to achieve the
fastest responsiveness.

The link between performance and computing com-
plexity is mostly balanced by the prediction horizon.
A longer prediction horizon means more future infor-
mation is taken into account, which improves perfor-
mance and requires more computing. Conversely, a
shorter prediction horizon leads to a reduction in com-
puting complexity but a corresponding drop in perfor-
mance [33]. A high prediction horizon of 60 has been
used, as indicated in Table 3, to achieve high perfor-
mance.

The physical input constraints that must be obeyed
are actuator limitations like maximum allowable angle
horizon of each joint, in order to bypass the singularity
and are taken as −π/3 to π/3. In the other hand, the
output constrains represent the allowable work space
for the end effector. Since the primary goal of the ma-
nipulator with the controller is to track the reference
XY position of the end effector, the weights of outputs
( ωx1 and ωx2 for X and Y coordinates respectively) in
Eq. (2) are set to one as mentioned in Table 3.

3. Simulation and Path
Tracking Scenarios

In this section, in order to illustrate the validity of the
MPC-controller in term of position control of CDRA as
well as the accuracy of the proposed modeling method,

two experiments are carried out to determine the po-
sition difference error along X and Y coordinates with
and without MPC controller. Our aim is to track the
reference trajectory with less displacement error. Lin-
ear and circular reference trajectories were designed in
these experiments. The Mean Square Error (MSE) is
used as a performance index to examine the system
and controller ability to track a desired trajectory [35].
MSE calculates the squared difference between two tra-
jectories as shown in the equation below:

MSE =
1

n

n∑
i=1

(ri − x̂i)
2, (3)

where ri represents the reference trajectory of points
while x̂i is the simulation output points. n is the num-
ber of trajectory data points.

3.1. First Scenario

The first reference trajectory is combined of four lin-
ear motions to shape a rhombus trajectory. The end-
effector starts from rest position where X and Y coordi-
nates is (1.6,0) m respectively. Then it travels through
(1.4,0.4), (1.2,0), (1.4,-0.4) m and then it returns back
to the initial point at (1.6,0) m after moving through
the desired trajectories as shown in Fig. 9.

Fig. 9: Rhombus trajectory tracking.

The MSE error for the above trajectory is 10e-5
which is very small for such metric sized robot manip-
ulator. From Fig. 10, it can be noticed that the MPC
output trajectory has been tracked the rhombus refer-
ence trajectory stated above in 20 seconds and maxi-
mum error occurs at 8.18 and 17.35 sec. Reference to
Fig. 11, it can be noticed that the peak errors occur
at the start and end of pulley C operation.
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Fig. 10: Position error of rhombus trajectory tracking.

Fig. 11: Pulleys inputs to neural network plant for rhombus
trajectory tracking.

3.2. Second Scenario

The second trajectory is a circular trajectory with ra-
dius of 0.15 cm and starting point of (X, Y) = (1.6,0).
A circular motion of 360-degree counterclockwise oc-
curs in X-Y plane, and the end-effector returns to the
prior position of (X, Y) = (1.6,0) Fig. 12.

Fig. 12: Circular trajectory tracking.

From the calculated results, it is obtained that the
circular trajectory has less MSE of 4.99e-05.

Fig. 13: Position error of circular trajectory tracking.

Fig. 14: Pulleys inputs to neural network plant for circular tra-
jectory tracking.

In this scenario, according to Fig. 13 the MPC con-
troller made the manipulator model to track the refer-
ence circular trajectory with the peak errors occur at
8.75 and 15.1 sec, which is again as a result of the start
and end point of pulley C engagement as shown in Fig.
14. The result in both linear and circular reference are
ideal in term of tracking error values.

4. Conclusion

In conclusion, this study introduces a 2D CDRM in-
tegrated with an MPC for precise position control.
Linear and circular trajectories are utilized to prove
the effectiveness of the modeling procedure and the
MPC controller. By strategically assigning weights to
critical output elements, namely the end-effector’s lin-
ear and angular positions, the proposed design offers
a straightforward structure devoid of complex mathe-
matical equations. The results are promising, affirming
the efficiency of the proposed modeling method and the
obtained model with the MPC controller in tracking
both linear and angular trajectories within acceptable
time and error constraints. Looking ahead, there is a
promising avenue for future research to implement this
data-driven CDRM in real-time applications, further
advancing the field of robotic manipulation.
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